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STUDY OF NONPARAMETRIC TECHNIQUES
FOR ESTIMATING RELIABILITY

AND OTHER LIFE QUALITY PARAMETERS

by

V.K. Murthy

CHAPTER I

SUMMARY

This study was undertaken to carry out a comprehensive investigation of
procedures for estimating probability distributions of life lengths, as
well as the corresponding probability densities and hazard functions, in
situations where little or no information is available on the family of
the underlying failure laws. In carrying out this study, nonparametric
techniques were developed for obtaining estimates and confidence bands for
various kinds of samples of life lengths--i.e., for random, censored, and
truncated samples. Large-sample techniques of this kind are derived and
discussed in Chapters II-IV. A procedure for optimizing the methods of
estimation described in Chapter II is recounted in Chapter VIII.
Discontinuities of the life distribution function correspond to times at
which the devices considered are exposed to increased "instantaneous
hostility." A statistical test is proposed in Chapter V which makes it
possible to determine whether such moments of increased instantaneous

hostility are present.



Exact small-sample probability distributions as well as well as the
corresponding asymptotic (large-sample) distributions to selected Réhyi-type
statistics are presented in Chapter VI. Extensive numerical tabulations

of these distributions have been performed, and results are summarized in

compact tables ready for practical use.

A family of life distributions with a number of interesting properties is
studied in Chapter VII. Applications of this family of failure laws

are postponed to a future study.



CHAPTER II
ESTIMATION AND CONFIDENCE BANDS FOR RANDOM SAMPLES

Concepts and Notations

The concepts and definitions introduced pertain to the perfarmance of a
component, It is assumed that failure of the component is well defined and
that the time from inception to failure 1s cbserveble and measured., Evidently
these concepts and definitions apply to any system of components in which

failure of the system is well defined and the time to failure is measured.

To establish & base foar the principal results derived in a later section, the
remainder of this section will be devoted to a derivation, accompanied with
the explicit definition of key notions and terminology of & component's
distribution function of time to failure and the associated hazard function,
Let the nonnegative real number T denote the observed time to failure of a
component, Other conditions remeining the same, if identical experiments

are conducted to determine the respective times to fallure on identical speci-
mens of a component type, the actual observed times to fallure need nct be
the same, even for identical experiments. In this sense, the cbserved time
to failure T is a random (stochastic or chance) variable, For any t >0, the
event T £ t is the event that the observed time to fallure is less than or
equal to a designated time instant t, or, equivalently, the event that the item

has failed by time t. Let

F(t) = P(T< t)

F(t), which is the probability of the event that the item has failed by time t,

is the distribution function of the random variable T. The complementary



event T > t, t 20, is the event that the observed time to failure is greater
than t or, equivalently, the event that the item survived time instant t. The

probability of this event is denoted by R(t), where
R(t) =P(T >t) =1 - F(t) . (2)

R(t) is custamarily called reliability of the item at time t. Assuming that
the singular part of F(t) is identically zero, F(t) can be uniquely decomposed

into (for example, Cramer (4, pp. 52-53])

F(t) = F (t) + Fo(t) , (3)

where Fl(t) is an everywhere absalutely continuous function and Fz(t) is a pure
step function with steps of magnitude, say, S » Su> O, at the points t = ¢t W
v=0, 1, 2, .ss., and both Fl(t) and Fe(t) are nondecreasing and uniquely
determined,

Let

d.Fl(t) = £(t) dt , (&)

where f(t), which is the derivative of the absclutely continuous part of the
distribution function F(t) » 1s called the probability density function, and the
symbol, dt, refers to an infinitesimal time increment,

Let

A:t<Tst+dt

B

T>t . (5)

A stands far the event that the component fails during an instantaneous

neighbarhood of the time instant t, while B stands for the event that the



camponent survived time t, Clearly

P(a/B) = %{‘%} - %%} , (6)

because the event A is contained in the event B; symbolically

ACB.

Now, at a point of continuity t of the distribution F(t)
P(A) = £(t) at
and

P(B) = 1-F(t) N

for all t 20,

The left-hand side of equation (6) denotes the conditional probability that
the item, having survived time t, fails between t and t + dt, t being a point
of continuity of the distribution F(t). Let z(t)dt denote the left-hand side

of equation (6), where, in view of equation (7),

f(t)dt

z(t)dt = 7% (8)

at a point of continuity t of the underlying law of failures F(t).
The function z(t) is called the hazard rate or the conditional failure rate ,

or sometimes, simply the failure rate,

A Basic Decomposition of the Cumulative Hazard Function

The function, z(t), is called the cumulative hazard function, where

2(t) = - log (1 ; F(t)) (9)




and F(t) is the underlying distribution function of time to failure given by

equation (3). Assuming the singular part of the distribution to be identically

zero, F(t) has the representation given in (3), namely,
F(t) = Fl(t) + Fe(t) ’ (10)
where Fl(t) is the absolutely continuous part, and F2(t) is the pure discrete

part (step function) of the distribution F(t). Since F(t) is a distribution

function,

F(0) = Fl(O) + FZ(O) =0, (11)
which implies
Fl(O) =0, FZ(O) =0
since Fl and F2 are nonnegative. Also
F () :Fl(oo) + Fz(ao) = 1. (12)

Substituting equations (10) and (12) in (9), one obtains

Z(t) = - log (Fl(oo) + Fz(oo) - Fl(t) - Fz(t))

F(») - F,(t)
2 2
- 1og | (F, () - F (1) (1 EROE Fl(t)>

FZ(OO) - Fz(t)
F () - F(0) (13)

= - log (Fl(oo) - Fl(t)) - log {1 +

far t < T, where T is the smallest integer such that Fl(w) = Fl(t) far

t 27; 1.e,, F is strictly discrete far t 2 v. This = can be O,



For t 2 7, we have

2(t) = - log (F () - F (t)).

To decampose Z(t) into its absolutely continuous part and pure step function

or discrete part, consider far t < T:

f(t) dt Fale) - Folt)
F (o) - F(t)

dZ(t) = F (o) - F (0 (14)

-d llog (1+

a
vhere f(t) =3 Fl(t) .

At this stage, it 1s interesting to notice that while

t
f(r)dT
/ F il - Fi(7)

o}

is the cumulative hazard function assoclated with Fl(t) , the absaolutely con-

tinuous part of the distribution function F(t), £(t)

being the hazard rate corresponding to Fl(t) , the function

t
f(r)dr
S FEEm
o

does not constitute the absolutely continuous part of the cumulative hazard

function Z(t) associated with the entire distribution F(t). The reason for

this is that

d {log |1 + F1(°°) - Fl(t)



contains an absolutely continuous camponent whieh must be added to

f(t)dt

to yield the absolutely continuous part of Z(t) , the cumulative hazard

function corresponding to F(t).
Now
F_(®) - F_(t) F_ () - F(t)
2 2 _ 1 1
d <log (l + Fl(oo) - Fl(t))>_< 1 - F(t) >

((Fz(oo) ] Fz(t)) f(e)dt - (F () - F () dF t)
(F i - F) (1) 2 )

) £(t)dt F2(°°) = FZ(t) dFZ(t)
1 - F(t) F () - F,(t) T T - F()

(15)




Substituting (15) in (14), it is deduced that

£(t)dt ( Fale) - Fz(t)) dF,®)

dz(t) = F () - F{(0) T-F @) / T 7
dF_(t)
_ f(t)dt 2
TI-F(t) 1 -F() (16)
Hence,
Z(t) = Zl(t) + ZZ(t), (17)
where
t
_ f(r)d
Z,(t) = ﬁy (18)
o
and
t )
dr. (r) U(t - t.)S;.
_ 2 _
Zz(t) = T—-F—(T)-_ Z T - F(t, ’ (19)
o j=o J

U(x) being the Heaviside Unit Function with

L farx 20
U(x)

o, otherwise,

Clearly, Z.l(t) and Zz(t) are, respectively, the absolutely continuous part

and pure discrete part of the cumulative lmzard function Z(t) associated with
the distribution function of time to failure F(t).

Since Z(t) exists and is equal to - log (1 - F(t)), the existence of either Zl(t)
or Zz(t) must be proved before the representation (17) is a valid decomposition

of Z(t).



Clearly, Z(t) = - log (L - F(t))1is non-decreasing, Z(0)= 0, Z(+=) = + ®, and
Z(t) =+ @ far t = F(t) = 1.
To this end, consider

t
_ f(r)dT
Z,(t) = f T-F(

o

Write, far t <,

f(t) £(t) F,(w) - F,(t)
- Fm - (F ) - B 0) \Fye - F 0 E, @) - Fom

Now £(t)

is absolutely integrable, since it is positive, and for t+ < v (see p.6)

2

t
£(r) _
J F (@) - F (7" " o8 (o) - 7y0)
(o]

and

F () - F(t)
Fl(oo) - Fl(t) + Fz(oo) - Fz(t)

=1,

Therefore,

f(t) < £(t)
1-F(t) F(o)-F/(t)’

which is absolutely integrable.

10
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Hence,

£(t
l-Ft

is also integrable and therefore Zl(t) exists far t < 7.

t
For t = m £(t) = 0, hence 2z (t) = f -ix%.-(;) at = 2,(7) = 2,(+ =),
o

The proof of the basic decamposition (17) of Z(t), the cumulative hazard

function of F(t), is thus complete.

Estimation of the Density of the Underlying Law of
Failures at a Point of Continuity

Let F(t), the distribution function of time to fallure T, be given by

F(t) = F,(t) + Fy(t), (20)

where Fl(t) is the absolutely continuous part, and Fe(t) is the pure step
function with steps of magnitude, S, at the points t = tv’ v=0,1, 2, ,, >,
Now let the randam variable T denote the observed time to failure of an

item, Let Tl’ T2, coe Tn denote the actual observed times to failure of n
identical items put to a life testing experiment., In other ‘words,

Ty» T2, cee Tn are the observed values of n independently identically dis-

tributed random variasbles with

P(Tis t’) =F(t)) i =l’ 2,-.. n,
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Since Fl(t) is absolutely continuous,

t
F (1) = f £(1) dr (21)
(o]

where f£(t) is the probability density function at a point of continuity t of
the distribution function F(t).
Let

1 _
Fn(-t,) == [number of observations < t among Tl’ Tpseee Tn] . (22)

Clearly, the random variable Fn(t), which is the empiricel distribution
function based on the dbserved sample, is a binamially distributed randam

variable with expectation and variance given by
E <F (t)) = F(t)
n

n

A weight function K(w) is called a window if it satisfies the following

conditions:

K(w) = K(-w) ,
lim wK(w) = 0,

jo] ==

o0

y K(w)dw=1. 24)

- o0
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Propose

0

/ B_ K(Bn(t - to))an(t)
o

fn(to)

B n
n
-1 K (Bn(Tj - to)) , (25)
=1

as an estimate of the density f(to) of the underlying law of failures at a
point of continuity to of the distribution function of time to failure F(t) ’
where {Bn} is a sequence of nonnegative constants depending on the sample
size n such that

limB =« |, (26)

n-re

Asymptotic Unbiasedness of the Estimate fn(to)

Taking expectation on both sides of (25) one obtains (since the observed
times to failure Tl, ‘1‘2

the common distribution F(t))

B n
E<fn(to)> E(2 D K (BT, -t)
j=1 |

seee Tn are independently identically distributed with

00

= f B_K (Bn(t - to)) dF(t) . (27)

[0}

It will now be proven that

lim E (fn(to)) = 1(t,) , (28)

n.>00



14

at & point of continuity t_ of the distribution F(t) where the density f(t) is
also continuous, The meaning of (28) is that as the sample size n increases
indefinitely the mean value of the estimate fn(to) converges to its true value
f(to) » vhich makes the estimate asymptotically (for large samples) unbiased.

To prove (28), the following lemma is needed.

Lemma 1

Let K(t) be a window satisfying (24). Let ti(i =0, 1,2, ....) be the points
of discontinuity of the distribution F(t), and let S, be the magnitude of the
jump in F(t) at t = t,. Further, let An(t) =B K<Bn(t - té)) where the

density £(t) is also continuous at t(') .

Then
0
lim J(A_ ) = lim A _(t) dF(t) = f(t') ,
1e00 n w00 n o (29)
o
provided the series
Si
Z r— converges.
|1 o (30)

(Note that this assumption is used only for (36) and (38).)
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Proof

Now

00

/ BnK<Bn(t - t('))) dF(t)
o]

J(An)

o]
- f BnK(Bn(t - t(‘))) dF | (£)
[e]

o0

+ / BnK(Bn(t - t('))) dF, (t), (31)

(o]

where Fl(t) and Fz(t) are, respectively, the absolutely continuous part and

the discrete part of the failure distribution F(t).

Now,
o0 o0
/ BnK(Bn(t - t;)) dF , (¢t) = / BnK<Bn(t - t(‘))) £(t)dt .
(o] [0}
Put
X = Bn(t - t(')) .
Then,

0 00
/ BnK<Bn(t - t(‘)))f(t)dt = / K(x) f <t:) + -B}—{r—1->dx. (32)

- 1
o Bnto
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Taking limit &8s n = ® on both sides of (32) we have, since £(t) is assumed

continuous at t('), that

@©

lim B_K <Bn(t - tg)> dF | (1)
n—+cw
(o]

f K(x) (té))dx

w

= f(t’)f K(x) dx

(o]
-0

= f(t;)), (33)

at a point of continuity t! of F(t) and also of £(t).
In view of (33), the proof of Lemma 1 is complete if it can be shown that

lim B_ K<Bn(t - tg)) dF,(t) = O,

n-»=0

(34)

at a point of continuity tc'> .

To show (34), consider
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00

/ B_K <Bn(t - t('))) dF, (t) Z B_K (Bn(ti - t:_))}Si

o 1

I
vs)
o}
o
—_——
oy
o]
e
1
-+
o
S—_—
\

+ Z BnK(Bn(ti - t;)))si

i>m

= 21t 20 sy G3)

Since t' is a point of continuity, t; ¥ té for all i, Because |t K(t)| - 0 as

t ~+te® an No > 0 can be chosen such that

1 1 .
IBn(ti-tO)K(Bn(ti-to))l<e for n > No and all i < m

(35")
where e is positive and arbitrary.
Hence,
'Z Si
< € —— < ¢ A
1 z t, -t'] = ¢ s 36

i<m l 1 OI (36)

where

A = Si
= z lt'_'t—'_< © , by assumption.
: i o
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Also, since t K(t) = 0) as |t| = =, it follows that |t K(t) | is bounded.

Hence |t K(t) | < Ko (finite) for all t. Therefare,

2,

5
<K, > [t -] (37)
1

i>m

S
Since Z‘ r— i converges by assumption, an integer m can be chosen such

that

5
z PEOTREE (38)
1 o

i>m

where ¢ 1s positive and arbitrary.

Note that one has to choose m first, so that (38); then N, so that (35').
Therefare, combining (35), (36), (37), and (38) we discover that

li B K(B t.-t'>s.=o,
lim > B, K(B,(t; - t)s; -
1

which proves (3L4).

This completes the proof of Lemma 1,

Remark 1
Note that if the points of discontinulty of the distribution function are

isolated points the condition imposed in the lemma, namely,



P>
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is autamatically satisfied,

For, in this case,

-+t
Ixilf'ti t! | >0

for every point of continuity té and consequently,
z <iz <L
|t - t' A Tt

where

' - 1
t'=Inif|ti tol.

Since in practice only isolated discontinuities are encountered in the law of

failures, the assumption
S

|t.-t'|
: i o
i

is always satisfied for applications.

Remark 2 ©

If as assumed in Lemma 1 K(t) does not satisfy (24), L K(t) dt # 1 but is

finite, i.e., J K(t)dt < =, then the limit in (29) will be

-0

tim 1 (A) = 1(t) [ K(n)at,

n—+o

(39)

(40)
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Now epplying (29) of Lemma 1 to (28) it is at once clear that
i_i: E (fn(to)) = f(to) l’: K(t) dt , (41)

at & point of continulty t_ of F(t) and £(t).

The Consistency of the Estimate fn(to) for Estimating f(to)

The consistency of fn(to) will be now established by showing that the variance
of fn(to) goes to zero as the sample size n tends to infinity. This, together
with the property of asymptotic unbiasedness proved earlier, will establish
the consistency.

Taking veriance on both sides of (25), we obtain

BZ

Var [fn(to)]]= "ﬁn (E <K2 (Bn(T - to))> - E® <K(Bn(T - to))> (42)

Taking limit n - « on both sides of (42), one obtains, in view of (28),
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BZ

lim Var [fn(to)] lim — E <K2 (Bn(T - to))>

nN—em n—o

Bz [°
T
Q

We now observe that the function Ka(t) has all but one of the properties of

©

K(t), nemely Kz(t)dt # 1, but that it is finite, Lemma 1, therefore,

- O

holds for Kz(t), with limit as given by (40),
Therefare,

lim Bn f Kz (Bn(t - to))dF (t) = f(to)f Kz(t) dt, (44)
(o] -

n—» oo

at a point of continuity to of the distribution F(t) and also of the density

£(t). Combining (43) and (44), we discover that

lim <§n—>Var [fn(to)] = f(to)/ KZ (t) dt, 459

N =0 n

at a point of continuity t, of F(t) and £(t).

Assuming now that Bn = ® as the sample size n - » more slowly than n in such
a way that

B
lim <"ﬁﬂ>= 0, (46)

n-=o®
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a sufficient condition for consistency, one obtains in view of (U45) that

uaver [6)] =0 - (1)

(28) and (47) together establish the consistency of the estimatar fn(to) for

estimating the density f(to) at a continuity point t, of F(t) and £(t).

Estimation of the Relisbility Function R(t)

The empirical reliability function Rn(t) based on observations is defined by

R (t) =1 F (), (u8)
where Fn(t) is the empirical distribution function given by (22). Therefore,

1
Rn(t) == [number of observations > t among Ty Tpy see Tn], (49)

where Tl’ Tsyves T are the observed times to fallure of n identical items

subjected to a life testing experiment.

Evidently Rn(t) is a binominally distributed random variable with mean and

variance given by
E (R, (1)) = R(t),

R (t) (1 -R(t)) (50)
n

Var [Rn(t)‘ =

at all points t, whether they are points of continuity or not of the underlying
law of fallures F(t). The meaning of (50) is that the empirical reliability

function Rn(t) based on the cbservations T,, T,,... T 1s unbiased and con-

l}
sistent for estimating the true relisbility R(t) at all points of time t.
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Another class of estimators R:{(t) for estimating the relisbility function R(t)
is now proposed and its properties examined, Let us start with the estimate
fn(t) given by (25), which was earlier shown to be asymptotically unbiased and

consistent for estimating the density £(t) at all points of continuity t of
F(t) and £(t) where

n
n (51)
£ (1) = 2 2 K (B, (T - t)).
J=

Now define the class of estimators

R:(t) =f°°fn(t)dt

t

B B o
=T2/K(Bn(TJ“”)dt ‘

(52)
It can now be proven that at a point of continuity t of the distribution F(t)
) % _
lim E (R_(t)) = R(t) (53)
N=e
lim |n Var (R:(t))l =R(t) (1 - R(t)). (56)
N =0
Let
Glt) = f K (t)dt . (55)
-0

In terms of G (t), R:i(t) can be written as

sk
Rn(t) =

B

n
z G(Bn(Tj - t)). (56)
=1
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Taking expectation on both sides of (56), the following is obtained:

E(REM) = [ 6B (11 aF @)
o

=1 - /mBnK(Bn(T- t))F(T) ar. (57)
[0}

Now

f B_K(B_(7- t))F(r)dr = / K()\)F(t + B—"-)dl. (58)

o) _Bnt

If t is a point of continuity of the distribution function of time to failure

F(t), one obtains, taking limit as the sample size n —  on both sides of (58),

lim OOBnK<Bn(T-t)>F(T) dT=/F(t)K(7\) dA = F(t). (59)

n—ew AP
o)

Cambining (57) and (59), we discover that

lim E (Rr:l(t)) =1 - F(t) = R(t), (60)

1) ==t O

at a point of continuity t of the underlying law of failures F(t). Equation
(60) establishes the asymptotic unbiasedness of R:(t) for estimating R(t) at
every point of continuity.

Taking variance on both sides of (56), we find that
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Var [R:(t)] = 1 var [G(Bn(f - t))]

-1 [E <GZ(Bn(T-t)>> -E? <G(Bn(T-t))>] . (61)

Now

E(GZ(Bn(T-t))) =f22(Bn(r-t)) aF(T)
(o]

R I N R,
o}

after integration by parts. Substituting Bn('r - t) = ), (62) can be written

as

® A
E<G2 (Bn(T - t))> -1-2 f G(\) K(\) F(t + ]—3;>d>\. 3
-Bt
n

Taking limit as n - = on both sides of (63) gives at a point of continuity t

of the distribution F(t)

lim E<G2 (B (T - t)))

n—+w

1 -2 F(t) f G(\) K()) d\

1

1- F(t) = R(t), (64)

0

since f G(\) K(\) d\ = %
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Cambining (57), (60), (61) and (64), we dlscover that

lim [n Var (Rn*(t)>:| = R(t) - R2(t)

n—-wo

= R(t) (1 - R(t))

at every point of continuity t of the underlying distribution F(t). Equations
(60) and (65) together establish the consistency of the class of estimators
R:(t) far estimating the reliasbility R(t) at every point of continuity t of the

underlying law of failures F(t).

Also, et a point of continuity t, the estimate R (t) (which is the empirical
reliability function) and the class of estimators 13::(1;) } have the same
asymptotic variance and order of consistency. In this sense, both Rn(t) and
R:(t) are asymptotically equivalent. But, for any given sample (finite), for a
given window K(t), the corresponding R:(t) may be more efficient than the
empirical relisbility function Rn(t) for estimating the reliability R(t) at

time t,

Having thus established the equivalence of the estimate Rn(t) and the class of
estimators R:(t) at & point of continuity t, we will examine in a subsequent
section of this report (Chapter V) what happens to these estimators at a
point of discontinuity of the underlying law of failwres., In this case , 1t is
shown that the estimators are not asymptotically equivalent and, indeed,
provide & method of estimating the probability of fallure of the item due to

undergoing instantaneous hostility at any such time instant,

(65)
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Estimation of the Hazard Rate at a Point of Continulty
t of the Law of Failures, F(t)

The basic decomposition thearem of the cumulative hazard function for any
arbitrary law of failure, F(t), establishes that at any point of continulty
t the unique derivative of the absolutely continuous part of the cumulative

hazard function (also called the hazard rate) is given by

_ f(t) - f(t
z(t) = T ¥t fﬁ);' (66)

The interpretation of z(t) dt is, as usual, the probability that the item having
swvived time t falls between t and t + dt.
Propose zn(t) as an estimate of the hazard rate z(t) at a point of continuity t

of the distribution F(t), where

£ (t)
2t = R (t) » (67)
n

fn(t) and Rn(t) being, respectively, given by (25) and (49). It has been
shown earlier that fn(t) is consistent for estimating the density £(t) at all

continuity points, i.e., fn(t) converges in probability to £(t). In symbols,

Plim fn(t) = (t), (68)

n-w
the symbol "Plim" standing far probability limit in the sense of c'onvergence

in probability. Also from (50), note that Rn(t) is consistent far estimating

R(t) at all points t, i.e.,

Plim R_(t) = R(t) (69)

n-—+o
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Since zn(t) is a rational function of fn(t) and Rn(t) and since the probability
limit of the denominator in zn(t) does not go to zero except at t = ®, we have

(using a well known convergence thearem of Cramer [L4, p. 254])

Plim 2,(t) - &t = =(0). (70)

The meaning of (70) is that the estimator zn(t) is consistent for estimating

the hazard rate z(t) at time t.

*
Also proposed is the class of estimators zn(t) for estimating z(t) where

£ (t)
2 (t) = ——, (71)
R, (t) ~

£ (t) and R:(t) being respectively given by (25) and (52). Since R::(t) and
Rn(t) are asymptotically equivalent for estimating the reliability R(t), where
t is a point of continuity of the distribution F(t), it follows that z:(t) is
also consistent for estimating z(t) and that both zn(t) and z:(t) are asymptoti-
cally equivalent for estimating the hazard rate z(t) at time t, t being a point

of continuity of F(t).

Asymptotic Normality and Confidence Bands for f(t), R(t), and z(t)

It is now possible to investigate the reliability of any time t, as well as
the question of what happens to the distributions of the estimates for the
density of the underlying law of failures at & point of continuity, and finally

the hazard or failure rate at a point of continuity of the underlying law of
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failures, In particular, it will be shown that these distributions are
asymptotically Geussian and thus provide the basis for large-sample confidence

bands for these life quality paramenters at any desired level of confidence.

In arder to prove the asymptotic noarmality, the following lemma 1s needed,

Lemma 2

Let V;, V,,

distributed random variables. Define the sequence {Sn} where
n
s =4 2 V..
n n j
j=1

Then asufficient condition for the sequence {Sn} to be asymptotically normally

s Voy oo Vn, ese be a sequence of independently and identically

distributed is that far same § > O

5
E|V, - B(v_)|*"

lim =0,
6/2(Var (Vn)> 1+6/2 (72)

n—+w n

For proof of this well-known lemma, refer to Parzen [9, p. 1019].

Asymptotic Normality of the Estimate fn(t) and Associated
Confidence Bands for the Density f(t)

The estimator fn(to) for estimating the density of the underlying law of

failures F(t) at a point of continuity t, is given by
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£ (t) = f mBn K(Bn(t - t0)>an(t)
(o]
B n
e 2 K(Bn(Tj " to))' | (73)
i=1

Now (73) can be written as

n
1
fn(to) " n Zvj ?
j=1
where
Vj = BnK (Bn(TJ. - to)), ji=1, 2, .. .n. (74)

The sequence {V,j} given by (74)1s independently and identically distributed

as a random variable

V(n) = B K (Bn(T - to)). (75)

Applying Lemma 1 to the random varisble V(n) given by (75), we discover that
- +6
+ 1+ 6/2 2
E|vim|2* o~ L Y2 e ) [ (k) 20 e,
S0

Var (V(n)) ~ By f(to)_./mKZ(t) a (76)

at every point of continuity to of the underlying law of fallures F(t) and

the density £(t).
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(o]
In view off K(t) dt = 1,

-

© 2+

_-c[ (K(t)) dt <o, for all 6§ = o. a7

B
Taking (76) and (77) and the conditicn that nn ~0easn—o

s, 1t is at once
clear that V(n) given by (75) satisfies the condition (72) of Lemma 2. It is
thus proved that the estimator fn(to) given by (73) is asymptotically narmal

for estimating f(to) at every point of continuity t_ of F(t) and £(t); that is

1
L\ 12 £ (t) - £(t) . j -z
lim P (—) <x\ = e ¥
B © 1/2 (78)
n-—» -
” n [f(t)f K2(r)dr| Vam T
—
at every continuity point t of F(t) and f£(t).
Now let ta be the upper a percentage point of a normal distribution with zero
mean and unit variance, Then, the confidence interval with confidence
coefficient & far the density £(t) at every point of continuity t is given by
the expression in the parenthesis of the following equation:
B =] 2 Bn @ 2 _
lim P|f (t) -ta\/-r-;rl fn(t)f K™ {7)dr = {(t) = fn(t)”a\/T fn(tJ K*(T)ar =@
n—eo > - a -®© (79)
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Asymptotic Normality of the Estimate R (t) and the Class of Estimatars
R (t) for Estimating the Reliabil:!.ty Function R(t)

The empirical relisbility function Rn(t) given by (49), where
=1
Rn(-b) = = [number of cbservations > t among Ty Tppeeo T 1, (80)
is binaminally distributed with
E(R_(t)= R(t)

Var (Rn(t))=;11- R(t) (l - R(t)) , (81)

at all time points t.

From the normal approximetion to the binominal distribution, it follows that

lim P \/;1 < X = —_—
n—o \/R(t)(l - R(t)) NZw

dy. (82)

R, (t) - R(t) . J' e-% y2

Hence, if ta is the upper « percentage point of a narmal distribution with

zero mean and unit variance, then

1/2 1/2

R_(t)F (t R
lim P{R A(t) - <—i)—ll(-)—> s R(t) sR (t) +t <—n(—t)—F£(1> =,
2

The expression within parentheses in the above equation is the & percentage
large-sample confidence interval for the reliability function R(t) based on
the empirical reliability function Rn(t). Since the exact distribution of

Rn(t) is known, exact confidence intervals based on the binominal distribution
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can also be cbtained for reliability function R(t),

*
Now consider the class of estimators Rn(t) given by (52), where

n
R%(t) =f°°fn (ar=1% G(BT; - ¥)) - (84)
¢ i1

*
The class of estimatars Rn(t) given by (84) has been shown earlier to be
consistent for estimating the reliability function R(t) at every point of
continuity t of the underlying law of failures F(t).

Now (84) can be written as

n
sk _ 1
Rn(t) =5 z Vj , (85)
where

V=G (Bn(TJ. - t))

and the sequence of random variables Vl, V2, «es 18 independently identically

distributed as the random varisble
V(n) = G (BT - 1)) . (86)
Applying Lemms 1 to the random varisble V(n) given by (86), we discover that

2+6
lim EIV(n)I <o, for 6 > o, and lim Var ( V(n)) < o, (87)

N—eon N=en

at every point of continulty t of the distribution F(t).
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In view of (87), the condition (72) of Lemma 2 is satisfied for the random
varisble V(n) given by (86). Hence, the class of estimatars R:(t) is
asymptotically normal foar estimating the reliability function R(t) at every

point of continuity t of the underlying law of failures F(t), i.e.,

X

e 1 2
R_(t) - R(t) . g Sz
-

lim P{ «n <x dy. (88)

n-— o sk sk \f2—~;r
\ /Rn(t) Fn(t)

Comparing (82) and (88), we find that the o percentage confidence interval

*
far R(t) is the same whether it is obtained from Rn(t) or Rn(t), since both

*
R (t) and R _(4) are asymptotically equivalent for estimating R(t) at every
n n
point of continulty t of the failure distribution F(t).

Asymptotic Normality of the Class of Estimators zn('h) for
Estimating the Hazard Rate z(t)

The estimator zn(t) far estimating the hazard rate z(t) at the point of con-

tinuity t is given by

£ (t) .
zn(t) = —R—n'(T)—, (89)
where fn(t) and Rn(t) are, respectively, given by (73) and (80).
From (50) one finds that R (t) is consistent for estimating R(t), i.e.,
Plinm R (t) = R(t). (90)

n - o



Also from (78),

1/2 £ (t) - £(t) R
lim P <B£> < —— ” >sx =1_[ e 27 dy .
n=ew o (f(t)f Kz(t)dt> Jzr®

Cambining (90) and (91) and using the convergence theorem of Cramer [L, p.251+],

we discover that

£(t)  £(t) N

- 1 2
1/2 R (t) R _(t) -5V
lim P <L> t = <X ¢ = —1—}’ e 2 dy
new | \°n ® 1/2 NPl .
<Tf(t) [ Kz(x)dx>
R7(t) Lo

Now consider

In view of (50)

and hence

v, = <Bl-> 1z (Rn(t) - R(t)) .

E(y )=0

Var (y,) =<§—>R<t> (1-rm),
n

Plim Y = 0.

11— O
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(91)

(92)

(93)

(94)

(95)



36

Cambining (92) and (95) and again using Cramer's convergence theorem

we obtain
X
/2 z_(t) - alt) X s o
lim P { [=~ <x$p=—| e dy.
n—e <Bn> t) 1/2 N2md-o (96)
2l f K (x)dx

Equation (96) establishes that the class of estimators zn(t) are asymptotically
normel for estimating the hazard rate z(t) at every continuity point t of the
underlhing law of failures F(t).

Now, consider the class of estimators z:(t) for estimating the hazard rate

z(t), where

97)

fn(t) and R:(t) are, respectively, given by (51) and (52).

Since Rn(t) and R::(t) are asymptotically equivalent at every continulty point
t of F(t) using a similar argument as in the case of zn(t), it is evident that
the class of estimators z:(t) is also asymptotically normal for estimating the
hazard rate z(t) at every continuity point t of F(t).

Now let ta be the upper a percentage point of & narmal distribution with zero
mean and unit variance., Then the confidence interval with confidence
coefficient 0 for the hazard rate z(t) at every point of continuity t of the
underlying law of failures F(t) is given by the expression in parentheses in

the following equation:

B (t) z
lim P <z (t) - t\/nn ; (t)f K2(x)dx < z(t) < z 0+ t\/i & mj Kz(x)dx>
n—w /z /2

(98
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ESTIMATION AND CONFIDENCE BANDS FOR CENSORED SAMPLES
In this chapter we consider the case of censored sampling, i.e., the situation

when N items are put to test and the test is terminated as soon as M = aN

items 0 < a < 1 have failed.

€ eee <1 be the observed times to failure of the M items.

Let 1, < 1 M

1 2

The empirical distribution function is given by

F, .(t) =

. number observations < t among
{Mln [the sample of size v M] } (99)

M,N

s say.

=g X~

How D a-ren™?

p{M=1}= i : '
) (?)Fl(t)(l-F(t))N'i (100)
=0

(N)[ L)
I oEe)

0,1,2,°+°M .

(%
]

(o)
o .
——
=
]
=
—
1]
=

" Hence M [N]‘i
. i
0

E(M) = Sy~ -




Now

N |
) 1[?]01 = [§JC+2[2}CZ+---+(N-1)[ﬁ_l
1=0
. N(N-1) .. . N(N-1)(N-2)
= NC+2 T3 Che3 DS
. (N-1)(N-2)
NC[1+(N-1)C + 5o
N-1
= NC 2.[“'1]03
- 3
= ne (1+0)¥1
et 1 oo
E(u) = 120 i=p+1
N
i=0 i=Me1 U
N ¢ N
Fap)e ] e
. i=0 ! G ONs
- N ¢ . N
) ’.‘)cl ) [N]ci
1=0 Ll i=0 i}
N
1- % [I.q]ci
1=1+1\2
g [N]Ci
i=o

sl
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N

I b .
c3+ N[N]C

tN-1]_.N-2, [N-1] .N-1
oo ]



1+C i=Me1 V7 M+1 [ ]

Ll

N
1- {[’i‘]c1
$=M#1V)

i)

N
L
M ¢ i=hl
E[F Fu,n(t’] = T+c- T w

x ] [i)e!

N] i
C
1=o[?
Consider now
K R
NHia 2 L)
i=M+1 - i=M+1
” (1+c)¥
i=0

N
N N| -1
= (1-F(t c
. (1-F(t)) Mzm[i]

K

[2+

F(t)

1-F(t)

) li)
i=M+1 N

|

‘39



Suppose M = 6N where 0 < 8 < 1.
N
: (-FeNY ] ’i‘)ci
i=yN
wvhere yNI = 6N+l
Hence
N
lm ) [’i‘]ci lim
Noe  i=}M+) - No
N
L
i=0
=0.
Now N N .
7 ooafNet < n 7 [Nt
i - i
i=M+1 i=M+1
Hence N .
e L
i=M+1 < i=M+1
N \ - N
N [’.‘]ci ) N)ci
i b 1 i
i=0 i=0
K
Hence lim z 1[?]01
Moo i=pa1
= 0
Y1
N} [i]c
i=0
Thus
lim E(GFM,N(t)) = F(t).

N

We will now prove that 6F

view of (101), since eFM,N

M,
(t) is asymptotically unbiased for estimeting F(t),

N

Then the above

N
a-ren® § (]!
i=yN

1t is sufficient to show that the variance of OF), N(t) goes to zero as the
. ]

sample size Now,

40

(101)

(t) is consistent for estimating F(t) for any t.

In
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Now
Var (eFM,N(t)) = Var (%-FM’N(t))
=3 _E(x?)  (E(n))? (102)
- g Ver () =BG -[N] .

In a straightforwvard manner as in the cese of E(SFM N(t)), it can be shown
b4
easily that

2
;im E(g L o p2y) . (103)
and
, |
;i: EL%;L = F2(t) . (104)

combining (102), (103) and (104) we discover that

lim Var (6F, ,(t)) = 0 . (105)
\
N

Equations (101) and (105) together establish the consistency of GFM N(t) for
estimating the underlying law of failures F(t). ’

In order to obtain consistent estimates for the density f(t) of the under-

lying law of failures and the hazard function Z(t) = £(t)/R(t), wve proceed
as follows:

Let K(x) be the usual weight-function or window as defined in Chapter

II above, and let {BN} be aBsequence of nonnegative constants depending on

the sample size N such that 7? + 0 as No=

Consider

F*M,N(I) = IOBNK(BN(t-T)) FM,N(t) dt , (106)

where from (99)

1l . Number of observations < t
F t) = = {Min - M ]} 107
wn(t) = { smong Ty, Tp,etr Ty ’ (107)
M
1
= 5 Z U(t-tJ) .
J=1
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end UY(x) =1 for x>0

= 0 othervise, o 5_12 < ¢t 2 1y ere the observed times to

failure of the M items.

Combining (106) and (107) we obtain

M ©

Pt y(t) = %'leBN é K(By(t-1)) Ut-1,) &t (108)
BN M
Ty E { K(By(t-1)) at .
J
Let
t
1- [ K(x)ax = ! K(x)ax = 6(t) . (109)
o

Making the substitution BN(t-r) = x in (108) we obtain

P (0 = & K(x) dx
M,N'T le IB ftx-r) (110)

] |
1
= 17 oy,
LR

In the form (110) the statistic F*M N('r) is straightforward and easy to calculate.
’

The consistency of F¥, N(t) for estimating F(1) can be established and the
b
details of the calculation will not be given here.

To obtain the estimate for the density f(t1) we differentiate both sides of

(110) with respect to ¢ and obtain

N
1
thy y(t) = E'JZIBNK(BN(TJ")) . (111)
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From the consistency of F*M N(1) for estimating F(t), the consistency of
, .
f* (1) |the derivative of F* (1)| for estimating f(t1) |[the derivative
M,N \ M,N

of F(T)} follows.

To estimate the hazard function Z(t) at time T, we propose

(1) Y (112)
1) = —thN_ - 112
1- FM’N(t)

*
z M,N

The asymptotic variance and the consistency of Z*M N('r) can be obtained
bl

by simple but tedious calculations. Also the asymptotic normality and

the associated confidence bands for all the estimates considered can be

established by methods similar to those in Chapter II.
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CHAPTER IV

ESTIMATION AND CONFIDENCE BANDS FOR THE TRUNCATED SAMPLING SCHEME

This section addresses the situation where the life testling scheme 1is truncated,
Iet N identical items be put to a life testing experiment and let the experi-
ment be terminated after time r.

Let T TE’ eee, T,, denote the observed times to failure obtained in the

r M

above experiment, Here each T,, 1 =1, 2, ..., M is a random variable and

1)
each is less than or equal to r. Also, the sample size M itself is a randam
variable, as we do not know before the experiment is perfoarmed how many of
the sample items fall by the fixed test period r.

Let
P[Ti St} “F(t), i Bl, 2, seey M.

F(t) is the underlying distribution function of time to failure T or, equlva-

lently, the so-called underlying law of failures.

Our object now is to estimate the underlying law of failures, the reliability
function, and the hazard rate, based on the above truncated sampling scheme,
without assuming anything about the farm of the underlying law of failures,

€.8., Welbull, lognormel, gamma, etc.
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The Empirical Distribution for the Truncated Scheme

1 |Number of observations among (113)

F (t) == ]
M M
Tyy Tpy eeey Ty St

forrt‘s'r;

= 1, otherwise,

since all Tl’ T2, eeey, T, are less than ar equal to .

M

From (113) it is easy to see that we cannot estimate the underlying law of

failures F(t) or, equivalently, the relisbility function R(t) far values

of time exceeding the test period T.

We will now write down the empirical relisbility function as follows:

RM(t) =1 - FM(t), where (114)

FM(t) is given by (113).
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Let

Ux) =1 foarx 20 (115)

= 0 otherwise,
In terms of (115), (113) can be written as
M
F(t)-}-zu(t-T) (116)
M M.~ j*?
J=1
far t <7,
= 1, otherwise.

Sampling Properties of FM(t) far the Truncated Case

Clearly, the sample size M is a binamially distributed randam veriable with

parameters N and probability p given by

p=P(T <) =F(). (117)
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Hence,

P(M = m} = < ﬂ) p (1 - p)" (118)
E(M) = Np = NF(T), (119)
Var(M) = Np(1 - p) = NF(7)R(T) . (120)

Now far any fixed M (say, M = m) we have, from (116),

E <Fm(t)> = B <U(t - TJ)> . (121)

Since all Tj S 1, we have for the distribution function of T 3

F(t)

1>('1.'351-,)=F_r

, 0<t <1, (122)

Using (121) and (122) we obtain

\
E <Fm(t)> =E U(t - TJ) (123)
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Since (123) is independent of m, we have fram (113)

F(t
E<FM(t)> =55 (124)

FM(t) is thus not an unbiased estimate of the underlying failure distribution

F(t).

Equation (124) thus suggests the following exactly unbilased estimate which

unfartunately involves F(r):

M
F()R,(8) = 21l YU - 1), fart st (125)
3=l

= 1 otherwise .
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Now since F(T) is & binomial probability, the best estimate for F(r) is given

by M/N. Substituting for F(T) its best estimate M/N in (125), we obtain

M
F(t) =% Z Ut -1,), tsn, (126)
=1

In (125) and (126) we assumed that the binomial random varisble M 21, From

(118) we obtain that the conditional distribution of M, given M 2 1, is

N) m Ne-m
P = /M 2 1) = <m Al (x2r)
1-(1~-p)

m=l, 2, 3’ OOO,N.

Hence
E(M/Mz1) = Z — . (128)
m=1 1-(1-p)
Thus
NF(T)
E(M/M 2 1) = (129)

1-(2-F(1))"
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Now the expected value of (126) far fixed M, say M = m, is given by

E<}m(t)> -2 %33. (130)

Now taking expectation with respect to m in (130) we discover, in view of

(129), that

- NF(T) F(t (131)
E <FM(t) > = ®\ T
N <l—(l~F(T) >
Taking limit as N —» « in (131), we discover that

lim E <;‘M(t)> =Ft) , t<m. (132)

N -

Equation (132) establishes that FM('t.) given by (126) is asymptotically unbiased

for estimating F(t) for t < 7.

In order to show that Fy(t) is comsistent for estimating F(t) for t < 7, we
will first compute the variance of FM(t) and then show that it goes to zero

as the sample size N - = ,
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We have
Var<§*M(t)> = E(N%l Var <u(t - T3)> (133)
- NF(r)  B(t) [, E(t))
N 1-(2-F(r))N) FUT R
1[F(t)<l'gﬁ > :\
N 1-(-r(r)¥ | °
Thus

lim NVar(va(t)> = F(t) <1-%%> , tsnT. (134)

N = o
It follows from (134) that
1im Var<FM(t)> =0 . (135)
N-=

Cambining (132) and (135), we discover that FM(t) given by (126) is consistent

for estimating F(t), t < 1.
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Followlng exactly the same procedure &s in Chapter II, we also discover

that the sequence of statistics given by

Vi ;‘M(t) - F(t) (135
[;‘ t)( 1 - N%M(t)> ]-ﬂE !
M v

converges in distribution to a normel distribution with zero mean and unit

variance as the sample size N+, fart <,
It now follows from (11l4) and (136) that the sequence of statistics
\/ﬁ RM(t) - R(t)

)i
M —N

converges in distribution to & narmal distribution with zero mean and unit

variance as the sample size N - =, where the empirieal reliasbility statistic

is given by

Ry(t) =1 F(t) , fart<r.
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The estimation procedure for estimating the hazard rate z(t) = £(t)/R(t) in
this case 1s very similar to the simple random sampling situation given in

Chapter II. Also, the asymptotic narmality follows in a similar manner.

Thus confidence bands at any desired level of confidence for the relisbility

function and the hazard rate follow from the above results and remarks.
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CHAPTER V

THE MEANING OF JUMPS OF F(t); ESTIMATION, AND TESTS OF HYPOTHESES

Interpretation of & Discontinuity and Jump in the

Underlying Law of Failures

If the distribution function F(t) of time to failure T is absolutely continuous,

then the pure step function F2(t) is identically zero for all t and

t
F(t) = F,(t) = f f(t)dT , (137)
(e}

where f(t), the derivative of the absolutely continuous part, is the probability

density function. In this case,

P(T = to) =0 , (138)

vhere to is any specified time instant. In other words, the probability of the
event that the item fails at time t is identically zero., On the other hand,
if the distribution function F(t) is not absolutely continuous and if the time
instant t_ corresponds to a polnt of discontinuity in the distribution F(t),

we have

P(T=tv)=Sv,v:O,l,2,..oo (139)
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where su is the magnitude of the jump of Fa(t) or F(t) at t = tu. The mean-

ing of (139) 1s that there is a strictly positive probability, equal to the size
of the jump, that the item fails at time instants corresponding to the points

of discontinuity in the underlying law of failures, This may happen if the
item is subjected to instantaneous hostile atmosphere at these time points.

A vehicular system traversing through space and being impinged upon by failure-
causing meteorites provides an example of such a situation.

Estimation of the Jump S, at the Discontinuity t,

i i

of the Underlying Law of Failures F(t)

Assuming the singular part to be identically zero, the distribution F(t)

can be decomposed into (see Cramer [L, pp. 52, 53]):

F(t) = Fl(t) + Fz(t) . (140)

vhere Fl(t) is an everywhere continuous function, and Fa(t) is a pure step
function with steps of magnitude, say, Sv at the points t = tu’ vVel, 2, ...;
Fl(t) and Fe(t) are nondecreasing and uniquely determined. Substituting (140)

in equation (57), Chapter II, we obtain

E< > fG( Tt)dF T)+j ( (T-t))dFZ(T)

= I+ I2 ) say . (141)
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Using arguments similar to those following equation (57) (Chapter II),
we readily obtain
lim Il = F1(°°)'Fl(t) .

nN—eoco

Since Fl(t) 1s continuous at t = t,,

(142)
=+ 00
at the discontinuity t = ti of the underlying law of failures F(t).
Now © ©
o v=1

Denoting
E: and by jz sumation

by summetion over all v such that tv>ti
t. >t t <t
v i v 1
over all v such that tu<ti, at the discontinuity t = ti of the distribution

F(t), I, can be written as

2 21 22 23
where
L, - Z SVG(Bn(tV-ti)>,
t <t.
v i
and
I,, = z SG(B (t -t.)).
23 otV n'v i )
v 1
Now
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where
> 5,G (Balt,-t;))
! t <ty
IvlSm
and
Z = S G(B_(t -t:.)).
2 Z 14 ( n' v 1)
tv<ti’
o

It can be argued, as in the proof of Lemma 1 (Chapter II) that 82 can be made

arbitrarily small by choosing m sufficiently large (no matter what n is); and

Z, for fixed m, can be made arbitrarily small by choosing n sufficiently

large, i.e.,
ezl < 0
From
23 = 4, Sv-, tsll'G<B(t )|
>t vl

it 1s discovered that

11mI 2 s

n-—- t>t

Of course, it should be noted that in proving the above statement it is

\4

assumed that z S
— <
Itv'ti|

© ,
V£

This proves that, at the discontinuity t+ = t, of the underlying law of

i
failures F(t)

limI, = 1/2 S; + 3‘ S,
n— 2 t >t
(144)
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Combining equations (1u41), (142), and (144) we obtain

ES 1
lim (Rn (t-l)> = Fy(@) - F (t;) +1/2S; + z S, (145)
n--o tv>ti
at the discontinuity t, of the underlying law of failures F(t).
Now
t; z
F(t;) = fd(Fl(t) +F,0) = Fi(t,) +20S,.
o Vo

and therefore

L - F(t) = Fi) +Fy®) - Fy(t;) - 2 S,
t St (146)

R(t;)

Fl(w) ’Fl(ti) + 2 Sv .

tV>ti
Substituting equation (146) in equation (145) we discover that

lim E(R)(t)) = R(t) +1/2s;. (147)

n-+co

From equation (50) of Chapter II we have that

E(Rn(ti)) = R(t) - (148)
Write
Hn(ti) = 2 [Rn(tl) - Rn(tl)} . (149)
In view of equations (147) and (148), we obtain

limE(Hn(ti)) = S, (150)

1
N-+

at the discontinuity ti of the underlying law of failures F(t) ,
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To obtain the variance of the statistic Hn(t i) » Wwe have

var (Hn(ti)) i 4[ var <R:(ti)) rver (R“(ti)> (151)
-2 Cov lR:(ti), Rn(ti)]]

Since we know Var (Rn('bi))as given by equation (50) of Chapter II, we only

have to obtein Var (R (t,)) and Cov [R:(ti), Rn(ti)]

From equation (61) (Chapter II) we have
a Var <R:1(t)) = E (GZ (Bn(,T—t))> - E2<G (Bn(T-t))) (152)
E <GZ ( Bn(T—t))>

G (Bytr-1) dF 1)

-+

6% (B,-1)) dF2() ,

1]
o
—
+
(3
o
0]
o
<

It is easily seen that

limJ; = F(®) - Ft),

n-=ox

lim Jp = 1/4 Si + z S , (153)
v

n-+© tv>ti

at the discontinuity tj of F(t).

Therefore,

Flo) - F1(t;) +1/4 S; + z S,

n->o tv>ti

lim E [GZ(Bn(T-ti))]

R(t) + 1/4°S; . (154)
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Combining equations (147), (152), and (154) we cbtain

lim [n Var (R:(q))] = R(t) + /45 - (Rt +1/2 s, ) ? (155)

n-+wo

¥*
To find the covariance between Rn(t) and Rn(t), let us recall that

n
R_(t) = llnyz1 G(Bn(TY—t)) (156)

and
Rn(t) = 1/n}number of observations >t
among T}, Tp,.. - Ty
n
= 1/n ZU(T -t), 157
/& 0Ty (157)
where
U(x) = 1 forx >0
= 0forx=<0 .
Now
n
Cov R;::(t), Rn(t)] = 1/n? Yz Cov G[(Bn(TY—t), U(TY-t))]
=1
= 1/n Cov [G (Bn(T—t)), U(T-t)] . (158)
We have

Cov\:G(Bn(T-t)), U(T—t)] = M) - M (159)



where ®
M) = [Ur-t) G(Balr-t) d (Fy@) + Fy ()
= Mllv +M12, say,
and

M, = E[U(T-t)]E]G(Bn(T-t))].

It can be easily verified that

@

lim Myp = lim [Ulr-t) G(B () aF () = F) (@) - F)(t)),

n-+o n-—+w o

at the discontinuity t = ti of F(t).

Also,
«
M, = iu(m) G(Bn('r-t)> dF, (v)
- 2 s, 6(s ),
tv>t. v ( n v 1
i
Hence,

liliz = Z S,

Nn—+w© t v> t].

at the discontinuity t = t;.
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(160)

(161)

(162)

(163)



Summing up,

lim Ml = Fl(co) -Fl(ti)+ 2 Sv = R(ti)
n-+o tv>ti

at the dis'continuity t; of F(t).

We have

fmu (r-t;) d (F1 (1) + Fy ()

de T)+z s,

t>t

=F1(’-‘°)- (t)+z Sy

V>t

E (U(T-t)

= R(tl)’

Combining equations (147), (161), and (165), we have

lim M, = R(t;) (R(ti) +1/2 Si) s

n-—+-o

et the discontinuity t 1°

Finaily, cambining equations (158), (164), and (166) we discover that

N—+w

lim Cov [G(B,(T-1), ur-n| = RE)|L-RE) -1/2S

62

(164)

(165)

(166)

(167)
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at the discontinuity ti.

Cambining all the above, we obtain

lim In Var<Hn(ti))] = 5,(1-5)) (168)

n—+-wx

at the discontinuity t = t, of the distribution F(t).

i

Writing the estimator Hn(ti) as
1

where

€y = ZIG(BH(TY-ti)> - U(Ty -t)) |, (169)

one can easily verify that the sufficient condition equation (72) of Chapter II
is satisfied by the sequence {§Y} of independently and identically distributed

random veriables, Thus we have proved

Theorem 3

The class of estimators {Hn(ti)) are consistent and asymptotically normel

for estimating the Jump S, corresponding to the discontinulty t = t, of the

i i
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underlying law of failures F(t).

Consider now the estimator
£ (t;) = V/B,f(t) (170)

and fn(t i) is given by equation (25) of Chapter II at the discontinuity ty

of F(t).

Since
n

f:(ti) = 1/n gl K(BH(TY -t)) ) (171)

a straightforward calculation yields that

LLrZE(fn (t-l)) = K(0) S; ,

lim [0 Var (f:(ti))] = K%(0) S,(1-S;)

n--w

(172)

at the discontinuity t = t, of the underlying law of failures F(t); and finally,

i
*

the estimate fn(ti) is asymptotically narmal., Thus, the classes of estimators

Hn(ti) and L—((%)— f:(t 1)] are asymptotically equivalent foar estimating the

Jump S, at the discontinuity t, of F(t).

i
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Tesgt. the othesis that the Under
Law of Failures Has no Junm

Let Tl, T2, oo '.I.‘n be the observed times to failures of n identical items put
to life testing experiment. Let K(t) be the usual weight functiom or window

as defined by equation (24) of Cbapter II, Let B, be a sequence of nonnegative
constants tending to infinity as n =» =,

Consider the statistic

n
s_ = 1 z K(B, (T, - TJ.>)
(2) =

n
2
It can be easily shown that
w 2
. = S ’
%%E(Sn) K(0) zl v
V=

S
i.e., the estimatar e asymptotically unbiased for estimating the sum
K(0)

of squares of Jumps in the underlying law of failures.

In a similar manner, it can be shown that

lim [n Var (sn)] = k%(0) S(1 - 8)
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Where

> 2
szzsv .

—

<

S
It can also be shown that the sequence of estimatars ﬂ%). is asymptotically

noarmal for estimating S,

Thus we have

Theorem 4

S
The sequence aof estimators f(%y 1s consistent and asymptotically normal

far estimating the sum of squares of Jumps S in the underlying law of failures.

The above theorem at once yilelds a large sample test of significance for

testing the hypothesis that

S=ZSQ =0,
T

i.e., whether the underlying law of failures F(t) has Jumps, or not,
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CHAPTER VI

s
ESTIMATION OF THE FAILURE LAW BY RENYI-TYPE STATISTICS

In this chapter appear tables of the exact distribution of some Réhyi—type
statistics., Expressions for the exact and limiting distributions are given.
Also discussed in this chapter are the accuracy of the tables and their use

for obtaining upper confidence conditions for the unknown distribution function
of failures. We also discuss the size of the sample necessary to use the

limiting distribution in place of the exact distribution.

Let T < ... E-Tn be an ordered sample from a random variable T (time to
failure) with continuous distribution function, F. Let Fn be the empirical

distribution function of this sample.

If little is known about the distribution function, F, then one seeks an
upper confidence contour for F, i.e., a function Gn(s), depending on the
sample, such that the assertion F(s) j_Gn(s) can be made on a preassigned

confidence level, for every s 2 0 or at least within some meaningful range.

The two statistics that will be considered are

D, = sup {Fn(t) - F(t)}

Fn(t)gp
and F_(t)-F(t)
D, = sup —_— .
2 F_(t)2a F (t)

The exact distribution of each of these statistics 1s known from [3]

and the limiting distributions were developed in [7] and [10].




The exact distributions of the statistics, D, and D2, are given by

1

Pl(n,a,c) = P[ sup {Fn(t)—F(t)} <«c]=
Fn(t)_>_a

k

= 1 J] M (d+o) Q- g™,
gm0 37 7

where k = ([n(l—a)] -1 > +

and by
( ) Fn(t)-F(t) ]
P_(n,a,c) = P[ sup —— < =
2 F (t)>a Fn(t)
n
N 3-1 n-3
=1l ] (D% (Q-c)+e (1-¢)(1- 3/n) ,
3=0
where k = <[n(1—a) ] -1>+
. N d if d>0
The notation (d) 1is defined by (d) = .
0 1if d<0

The limiting distributions of the statistics are given by

lim P[{/n sup {F_(t)-F(t)} <c] =
n-o Fn(t)za n

c 2 c

1 2 -2c 3 2
_ o J t 54 - & j oot /24t
2n -

(173)

(174)

(175)

68
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c c-2ac
where cl = ——=———  and c3 B —
va(1-a) Ya(l-a)
and by
[/— Fn(t)‘F(t)
lim P{vn sup —_—r <c| =
o F_(t)2a F (t) ] (176)
1/2
¢ (a/1-a)
_ 2 2 e,
Y27 0

The following is a brief description of the computations leading to the
tables. The computations for both tables were done by an IBM 360 computer
system using the expressions (173) and (174) for the respective statistics.
The programs were written in FORTRAN IV language in double precision.
Computations of the exact distributions of both statistics were done for the
following values of n,a, and c:

n=5(5)50, a=.10(.10).80, and c¢=.05(.05).90.
Due to double precision, the probabilities are accurate to five decimal
places. Since the limiting distributions are much easier to calculate than
the exact distributions, it clearly is useful for practical reasons to know
at what level of sample size the exact and limiting distributions differ
by less than, say, .001. Additional computations using expressions (175)
and (176) have indicated that this is the case for n greater than 40 for

the statistic Dl and for n greater than 50 for the statistic Dz.




If the sample Tl"”Tn is censored from above to m observations (m<n),

then F is known only for those values of t for which Fn(t) _<_'I-;- .

While the two statistics, D1 and D2, correspond to censoring from below,

the following simple replacement in the statistics leads to the case of
censoring from above: In both statistics let F(t) be replaced by

1-F(-t), Fn(t) by l-Fn(-t), and -t by t. Then one has:

P[Dlic] = P[ sup {F(t)-F_(t)} 3:] 77
F (t)<l-a
2SS
F(t)-Fn(t) 178
P|D,<c| =P sup —=y Sc | . 178
[ = ] [ F (t)<l-a 1-F, (8 ]

Simplifying both (177) and (178) leads to

KN

P[Dlip ]

P[F(c):pn(c) +c for F_(t)<l-a ] = (179)

P[F(t)iFn(t) + ¢ for t<T , k-<[n(1-a)] -1> +]

and

P[Dzic ] = P TF((:)_an(t)(l—c) + c for Fn(t)il-a] (180)

r / =
= P F(t)iFn(t)(l—c) + ¢ for t<T, , k=| [n(l-a)] -1 +'
- \\ 4
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Let D denote either of the statistics, D. or D,. In practical situations one

1 2

is given a sample size n, a censoring level a, O<a<l, and a confidence level

l-a; and for both statistics one seeks the minimum ¢, denoted Cys in the

range of c given above so that
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P[Qgpa] > 1-a . (181)

For each statistic this will give an upper confidence contour at the

l1-a level.

For each statistic, for each n and a in the range given above, and for
a=.10, .05, .02, and .01, the value of cy in the range .05(.05).90 appears

in the tables along with P[Dﬁpa] and P[DSPa - .05 ].

Thus, for a given n,a, and o one obtains from Tables I and II the critical

values, c 1 and c,.p SO that the following inequalities hold:
k4 9’

P[Dlica,l ]- P[F(t)iFn(t) + °a,1 for (182)
t:iTk, k -< [n(l—a)] -1>+] >1-a
and
P[Dsza’z ] = P[F(t)gﬁn(t)(l—ca,z) + cm’2 for (183)

t<T,, k-<[n(1—a)]-l>+] 2l-a .

For example, for n=10, a=.20, a=.05 for the statistic D, one finds in Table I

1
the value cu=.40. The corresponding probability, obtained from Table I

is P1(10, .20, .40) = ,970505. Also, from the same row, one has Pl(IO,.ZO,.35) =

= .933015. The confidence contour obtained is given by

P[F(t):ﬁlo(t) + .40 for t<T ] = .970505 > .9500 = 1-a .

7



For the statistic D, one obtains from Table II for n=10, a=.20, and

2
a=,05 the critical value cu=.75 and the corresponding probabilities

Pz(lo,.zo,.75) = ,962044, P2(10,.2o,,7o) = ,938123.

This yields an upper confidence contour given by

P| F(t)<F

__lo(t)(.ZS) + .75 for x<T, |= .962044 > .9500 = l-a .

7

72
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TABLE 1
a ¢, Pl(n,a,cu? Pl(n,a,ca -.05)
a=,10, n=5
.10 .45 .902998 .845440
.20 .45 .902998 .845440
.30 .45 . 902998 .845440
.40 .45 .902998 . 845440
.50 .45 . 915907 .871040
.60 .45 .915907 .871040
.70 .40 922224 .883971
.80 .40 .922224 .883971
o=,10, n=10 :
.10 «35 .933013 .864536
.20 .35 .933013 .864536
.30 .35 .933013 .864536
.40 .35 .933369 .868256
.50 .35 .936865 .878165
.60 «35 . 944435 .893918
.70 .30 .915152 .849516
.80 .30 .941519 .891907
@=.10, n=15
.10 .30 . 946009 .870227
.20 .30 . 946009 .870227
.30 .30 . 946036 .871628
.40 .30 . 946682 .875512
.50 .30 . 952051 .891090
.60 .25 .902533 .806772
.70 .25 .932071 .858129
.80 .25 . 949720 .889823
o=.10, n=20
.10 .25 .931173 .822814
.20 .25 .931173 .822814
.30 .25 .931250 .825257
.40 .25 . 933149 .834565
.50 .25 . 938765 .850587
.60 .25 .948270 .872754
.70 .20 . 900856 . 782405
.80 .20 . 934560 .842035
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a Cy Pl(n,a,ca) Pl(n,a,ca -.05)
a=,10, n=25
.10 .25 .963496 .881683
.20 .25 .963496 .881683
.30 .25 .963546 . 883444
.40 .25 .964240 . 888442
.50 .20 .902474 . 765900
.60 .20 .915859 . 793050
.70 .20 2941222 .843814
.80 .20 .960763 .885483
a=.10, n=30
.10 .20 .920985 .764733
.20 .20 .920985 .765179
.30 .20 .921449 .771860
.40 .20 .924870 .786787
.50 .20 .943524 .808842
.60 .20 .944213 .837623
.70 .20 .959268 .873403
.80 .15 916464 .761349
=.10, n=35
.10 .20 «947231 .812358
.20 .20 .947231 . 812569
.30 .20 .947567 .818474
.40 .20 2949477 .829111
.50 .20 .955642 .850795
.60 .20 .962942 .872285
.70 .15 .907688 .734762
.80 .15 .938773 .797235
a=,10, n=40
.10 .20 .964758 .850342
.20 .20 .964758 .850441
.30 .20 . 964849 .853648
.40 .20 .966056 .863043
.50 .20 .969509 .878461
.60 .20 .975350 .899362
.70 .15 .925244 .759626
.80 .15 .954956 .827198
a=,10, n=45
.10 .20 .976463 . 880635
.20 .20 .976463 . 880682
.30 .20 .976529 .883434
.40 .20 977214 . 890252
.50 .15 .904711 .702222
.60 .15 .920582 . 738592
.70 .15 .944967 .795265
.80 .15 .966760 .852366




TABLE I (Continued)

a c, Pl(n,a,ca) Pl(n,a,ca—.OS)
a=.05, n=5
.10 .55 .970152 .944000
.20 .55 .970152 .944000
.30 .55 .970152 .944000
.40 .55 .970152 .944000
.50 .55 .970805 . 948500
.60 .55 .970805 .948500
.70 .50 .968750 .949671
.80 .50 .968750 .949671
a=,05, n=10
.10 .40 .970505 .933013
.20 .40 .970505 .933013
.30 .40 .970505 .933013
.40 .40 .970505 .933013
.50 40 .971167 .936865
.60 .40 .973919 .944435
.70 .35 .955852 .915152
.80 .35 .970418 .941519
a=.05, n=15
.10 .35 .981021 .946009
.20 .35 .981021 . 946009
.30 .35 .981020 .946036
.40 .35 .981040 .946682
.50 .30 .952051 .891090
.60 .30 .957019 .902533
.70 .30 .970924 .932071
.80 .30 .979255 .949720
a=.05, n=20
.10 .30 .978466 .931173
.20 .30 .978466 .931173
.30 .30 .978466 .931251
.40 .30 .978595 .933149
.50 .30 .979740 .938765
.60 .30 .982595 .948270
.70 .25 .961147 .900856
.80 .25 .976280 .934560
a=.05, n=25
.10 .25 .963496 .881683
.20 .25 .963496 .881683
.30 .25 .963546 .883444
.40 .25 .964240 .888442
.50 .25 .967970 .902474
.60 .25 .972484 .915859
.70 .25 . .981731 .941222

.80 .20 .960763 .885483
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a <, Pl(n,a,ca) Pl(n,a,ca—.OS)
a=,05, n=30
.10 .25 .980638 .920985
.20 25 .980638 .920985
.30 .25 .980638 .920985
.40 .25 .980920 .924880
.50 .25 982342 .932524
.60 «25 .985348 .944213
.70 .20 .959268 .873403
.80 .20 976313 .916464
a=.05, n=35
.10 .25 .989730 .947231
.20 .25 .989730 .947231
.30 .25 .989732 .947567
.40 .25 .989838 .949477
.50 .20 .955642 . 850795
.60 .20 .962942 .872285
.70 .20 .975411 .907688
.80 .20 - ,985626 .938773
a-,05, n=40
.10 .20 964758 .850342
.20 .20 .964758 .850342
.30 .20 974849 .853648
.40 .20 .966056 .863043
.50 .20 .969509 .878461
.60 .20 .975350 . 899362
.70 .20 .983014 925244
.80 .15 .954956 .827198
a=,05, n=45
.10 .20 .976463 .880635
.20 .20 976463 . 880682
.30 .20 .976529 .883434
.40 .20 977214 .890252
.50 .20 .979876 .904712
.60 .20 .983587 .920582
.70 .20 .989634 944967
.80 .15 .966760 .852366
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a Cq Pl(n,a,ca) Pl(n,a,ca -.05)
a=,02, n=5
.10 .60 .984960 .970152
.20 .60 .984960 .970152
.30 .60 .984960 .970152
.40 .60 .984960 .970152
.50 .60 .984960 .970805
.60 .60 .984960 .970805
.70 55 .981547 .968750
.80 .55 .981547 . 968750
a=.02, n=10
.10 .45 .988554 .970505
.20 .45 .988554 .970505
.30 .45 .988554 .970505
.40 .45 .988554 .970505
.50 .45 .988554 .971167
.60 .45 989244 .973919
.70 .45 .991098 .979063
.80 .40 .986141 .970418
a=,02, n=15
.10 .35 .981021 .946009
.20 .35 .981021 . 946009
.30 .35 .981021 .946036
.40 .35 .981034 .946682
.50 .35 .982170 .952051
.60 .35 .983756 .957019
.70 .35 .989022 .970924
.80 .35 992344 .979255
a=,02, n=20
.10 .35 .994622 978466
.20 .35 .994622 .978466
.30 .35 .994622 .978466
.40 .35 .994623 .978595
.50 .35 .994730 .979740
.60 .30 .982595 .948270
.70 .30 .987096 .961147
.80 .30 .992543 .976279
a=,02, n=25
.10 .30 .991411 .963496
.20 .30 .991411 .963496
.30 .30 .991411 .963546
.40 .30 .991436 .964240
.50 «30 .991966 .967970
.60 .30 .992958 .972485
.70 .25 .981731 .941222
.80 «25 .988701 .960763
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a c, Pl(n,a,ca) Pl(n,a,ca-.OS)
a=,02, n=30
.10 .25 .980638 .920985
.20 .25 .980638 .920985
.30 .25 .980640 «921449
.40 .25 .980920 .924880
.50 .25 .982342 .932524
.60 .25 .985348 .944213
.70 .25 .989701 .959268
.80 .25 .994580 .976313
a=,02, n=35 .
.10 .25 .989730 .947231
.20 .25 .989730 .947231
.30 .25 .989732 .947567
.40 .25 .989838 .949477
.50 .25 .990714 .955642
.60 .25 .992192 .962942
.70 .25 .995063 .975411
.80 .20 .985626 .938773
a=,02, n=40
.10 .25 .994552 +964758
.20 .25 .994552 .964758
.30 .25 .994552 . 964849
.40 .25 .994594 . 966056
.50 .25 .994937 .969509
.60 .25 .995838 .975350
.70 .20 .983014 .925244
.80 .20 .991241 +954956
a=.02, n=45
.10 .25 .997110 .976463
.20 .25 .997110 .976463
.30 .25 .997110 .976529
.40 .25 .997126 .977214
.50 .25 .997330 .979876
.60 .20 .983587 .920582
.70 .20 .989634 . 944967
.80 .20 +994646 .966760
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a <, Pl(n,a,ca) Pl(n,a,cu—.OS)
a=,01, n=30
.10 .30 .996574 .980638
.20 .30 +996574 .980638
.30 .30 .996574 .980640
.40 .30 .996579 .980920
.50 .30 .996697 .982342
.60 .30 .997154 .985348
.70 .30 .998001 .989701
.80 .25 .994580 .976313
a=.01, p=3s5
.10 .30 .998633 .989730
.20 .30 .998633 .989730
.30 .30 .998633 .989732
.40 .30 .998634 .989838
.50 .25 .990714 .955642
.60 .25 .992192 .962942
.70 .25 .995063 .975411
.80 .25 .997387 .985626
o=,01, n=40
.10 .25 «994552 .964758
.20 .25 .994552 .964758
.30 .25 .994552 . 964849
.40 .25 .994594 . 966056
.50 .25 .994937 .969509
.60 .25 .995838 .975350
.70 .25 .997235 .983014
.80 .20 .991241 .954956
a=,01, n=45
.10 .25 .997110 .976463
.20 .25 .997110 .976463
.30 .25 .997110 .976529
.40 .25 .997126 977214
.50 .25 .997330 .979876
.60 .25 .997781 .983587
.70 .25 .998659 .989634
.80 .20 .994646 .966760
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TABLE I
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a c, Pz(n,a,ca) Pz(n,a,ca-.OS)
a=.10, n=5
.10 .75 .910758 874423
.20 .75 .910758 .874423
.30 .65 .927216 .895265
.40 .65 .927216 .895265
.50 .50 .904750 .865339
.60 .50 .904750 .865339
.70 .40 .922240 .883971
.80 .40 .922240 .883971
a=,10, n=10
.10 .75 .903122 .864586
.20 .65 .907319 .869529
.30 .60 .927309 .892857
.40 .50 .904894 .861918
.50 .45 .911194 .866802
.60 .40 .914735 .867673
.70 .35 .918037 .867401
.80 .30 .924851 .870963
¢=,10, n=15
.10 .65 .901136 .861726
.20 .60 .917586 .880166
.30 .50 .923233 .883215
.40 .45 .918203 .873833
.50 .40 .936651 .894112
.60 .30 .924993 .873326
.70 .30 .939817 .887618
.80 .25 .927235 .859496
a=,10, n=20
.10 .70 .931302 .898124
.20 .55 .916571 .876754
.30 .45 .903903 .855207
.40 .40 .915308 .864764
.50 .35 .918447 .862796
.60 .30 .916341 .851632
.70 .25 .910792 .831626
.80 .20 .904768 .803238
0=,10, n=25
.10 .60 .910059 .870518
.20 .50 .907360 .862590
.30 .40 .902838 .848362
.40 .40 .942353 .899795
.50 .30 .909015 .840222
.60 .30 .943948 .889383
.70 .25 .948012 .885179
.80 .20 .934598 .845578



TABLE II (Continued)
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a Sy Pz(n,a,ca) Pz(n,a,ca-,OS)
a=,10, n=30
.10 .60 .908212 .868174
.20 .50 .929810 .890122
.30 .40 .916158 .864584
.40 .35 .925087 .869812
.50 .30 .924601 .860314
.60 .25 .916786 .835993
.70 .20 .901457 .791727
.80 .20 +954656 .877856
a=,10, n=35
.10 .55 .907848 .865579
.20 .45 .911647 .863566
.30 .40 .942496 .899052
.40 .35 .943617 .894928
.50 .30 .948847 .894838
.60 .25 .936977 .864543
.70 .20 .931165 .834699
.80 .15 .902808 .748228
a=,10, n=40
.10 .55 .906418 .863767
.20 .45 .928641 .884791
.30 .35 .909502 .848473
.40 .30 .914798 .845559
.50 +25 .907631 .821147
.60 25 .952016 .887615
.70 .20 .940771 .848939
.80 .15 2922296 .776908
a=,10, n=45
.10 .55 .933717 .897158
.20 .40 .902394 .846514
.30 .35 .931718 .877530
.40 .30 . 930646 . 866920
.50 .25 .929615 .851692
.60 .20 .906416 .794210
.70 .20 .958029 .878686
.80 .15 .937637 .801746
a=,10, n=50
: .10 .55 .932785 .895906
.20 .40 .917080 .864728
.30 .35 .938614 . 886819
.40 .30 .943368 .885009
.50 .25 .937969 .863701
.60 .20 .921834 .816069
.70 .20 .963801 .888918
.80 .15 .949790 .823390




TABLE II

(Continuad)

a c, Pz(n,a,ca) Pz(n,a,ca-.OS)
a=,05, n=5
.10 .80 .952246 .910758
.20 .80 .952246 .910758
.30 .70 .952482 .927216
.40 .70 .952482 .927216
.50 .60 .958303 .935358
.60 .60 .958303 .935358
.70 .50 .968750 .949672
.80 .50 .968750 .949672
a=.05, n=10
.10 .80 .973956 .945877
.20 .75 962044 .938123
.30 .65 .953728 .927309
.40 .60 . .961843 .937808
.50 .55 .966641 .943828
.60 .50 .970083 .947800
.70 .40 .951960 .918037
.80 .35 .958452 .924851
a=.05, n=15
.10 .75 .958954 .933549
.20 .70 .968381 +946795
.30 .55 .952572 .923233
.40 .50 .950103 .918203
.50 .45 .964616 .936651
.60 .40 .958483 .924993
.70 .35 .970060 .939817
.80 .30 .964953 .927235
a=,05, n=20
.10 .75 957422 .931302
.20 .65 .968828 .946945
.30 .55 .965060 .939926
.40 45 .950392 .915308
.50 .40 .954930 .918447
.60 .35 .956414 .916341
.70 .30 .956626 .910792
.80 .25 .958021 .904768
a=.05, n=25
.10 .70 .964749 .941327
.20 .60 .965405 .941224
.30 .50 .965622 .941692
.40 .45 .969453 .942353
.50 .35 .952327 .909015
.60 .35 974264 .943948
.70 .30 .978949 .911801
.80 .25 975411 .934598



TABLE II (Continued)

a c, Pz(n,a,ca) Pz(n,a,ca-.OS)
a=,05, n=30
.10 .70 .963840 .939972
.20 .55 .958233 .929810
.30 .45 .951725 .916158
.40 .40 .960372 .925087
.50 .35 .962992 .924601
.60 .30 .962061 .916786
.70 .25 .958727 .901457
.80 .20 .954656 .877856
a=,05, n=35
.10 .65 .964611 . 940609
.20 .55 .970125 . 946495
.30 .45 .969998 .942496
.40 .40 .972557 .943617
.50 .35 .977809 .948847
.60 .30 2974124 .936977
.70 .25 .975268 .931165
.80 .20 .968336 .902808
a=,05, n=40
.10 .65 .963905 .939559
.20 .50 .959016 .928641
.30 .40 .950168 .909502
.40 .35 .957339 .914798
.50 .30 .957385 .907631
.60 .25 .952016 .887615
.70 .25 .980308 .940771
.80 .20 .977764 .922296
a=,05, n=45
.10 .60 .960332 .933717
.20 .50 .968484 .942157
.30 .40 .965362 .931718
.40 .35 .967584 .930646
.50 .25 .970689 .929615
.60 .25 .963310 .906416
.70 .20 .958029 .878686
.80 .20 .984314 .937637
a=,05, n=50
.10 .60 .959693 .932785
.20 .45 .952971 .917080
.30 .40 .969891 .938614
.40 .35 .975283 .943368
.50 .30 .975488 .937969
.60 .25 .971847 .921834
.70 .20 .963801 .888918

.80 .20 .988893 .949790



TABLE IT (Continued)
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a . Pz(n,a,ca) Pz(n,a,ca-.OS)
a=,02, n=5
.10 .85 .981385 +952246
.20 .85 .981385 .952246
.30 .80 .984893 .971408
.40 .80 .984893 .971508
.50 .70 .985958 .974771
.60 .70 .985958 .974771
.70 .55 . 981547 .968750
.80 .55 .981547 .968750
a=.02, n=10
.10 .85 .980235 .971879
.20 .85 .982748 .973956
.30 .75 .985828 .972898
.40 .70 .988984 .978396
.50 .60 .981661 .966641
.60 .55 . 984048 .970083
.70 .50 .986393 .973507
.80 .45 .985482 .978336
a=,02, n=15
.10 .80 .984328 .958954
.20 .75 .983217 .968381
.30 .65 .985883 .972849
.40 .60 .985338 .971711
.50 .50 .981762 ,964616
.60 .50 .990041 .978728
.70 .40 .986281 .970060
.80 .35 .984402 .964953
a=,02, n=20
.10 .80 .982607 .957422
.20 .70 . 983486 .968828
.30 .60 . 981405 .965060
.40 .55 .986774 .973145
.50 .50 .989461 .977107
.60 .45 .991055 .979225
.70 .35 .980803 .956626
.80 .30 .983230 .958021
a=,02, n=25
.10 .75 .981075 .964749
.20 .65 .981485 .965405
.30 .55 .983624 .967622
.40 .50 .985307 .969453
.50 .45 .990277 .977271
.60 .40 .989422 .974264
.70 .35 .992451 .978949
.80 .30 .991839 .975411



TABLE II (Continued)
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a G Pz(n,a,cu) Pz(n,a,ql-.OS)
o=,02, n=30
.10 .75 .982949 .970413
.20 .65 .988893 .977233
.30 .55 .987852 . 974495
.40 .45 . 980987 .960372
.50 .40 .983692 .962992
.60 .35 .984632 .962061
.70 .30 .984826 .958727
.80 .25 .985441 .954656
a=,02, n=35
" .10 .70 .980974 .964611
.20 .60 .984911 .970125
.30 .50 .985892 .969998
.40 .45 .988072 «972557
.50 .40 .991543 .977809
.60 .35 .990746 .974124
.70 .30 . 992404 .975268
.80 .25 .991309 .968336
a=,02, n=40
.10 .70 .980548 .963905
.20 .60 .989944 .978519
.30 .50 .988832 .975046
.40 .40 .980885 .957339
.50 .35 .982673 .957385
.60 .30 .982247 .952016
.70 .25 .980308 .940771
.80 .25 .994779 977764
a=,02, n=45
.10 .70 .989597 .978393
.20 .50 .987732 .972966
.30 .45 . 984264 .965362
.40 .40 .986624 .967584
.50 .35 .989452 .970689
.60 .30 .987762 .963310
.70 .25 .988005 .958029
.80 .20 .984314 .937637
a=,02, n=50
.10 .65 .989383 .977999
.20 .55 .988762 .975686
.30 .45 .986868 .969891
.40 .40 . 990604 .975283
.50 .35 .991730 .975488
.60 .30 .991531 .971847
.70 .25 .990424 .963801
.80 .20 .988893 .949790



TABLE 11 (Continued)
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a c, ?gfp,a,ca) Pg(n,a,cg-.OS)
o=,01, n=5
.10 .90 .990083 .981385
.20 .90 .990083 .981385
.30 .85 .991471 .984893
.40 .85 .991471 .984893
.50 «75 .993023 .985958
.60 .75 .993023 .985958
.70 .65 .994748 .989760
.80 .65 +994748 .989760
a=.01, n=10
.10 .90 .990927 .980235
.20 .90 .990927 .980235
.30 .80 .993711 .985828
.40 .75 .995128 .988984
.50 .65 .990850 .981661
.60 .60 .992230 .984048
.70 .55 «993579 .986393
.80 .50 .995240 .989438
a=.01, n=15
.10 .90 .995244 .984328
.20 .80 .992436 .983217
.30 .70 .993525 .985883
.40 .65 .993213 .985338
.50 .55 .991460 .981762
.60 .50 .990041 .978728
.70 .45 .994274 .986281
.80 .40 .993642 .984402
a=.01, n=20
.10 .85 .995824 .982607
.20 .75 .992405 .983486
.30 .65 .991535 .981405
.40 .60 .994199 .986774
.50 «55 .995687 .989461
.60 .45 .991055 .979225
.70 .40 .992347 .980803
.80 .35 .993977 .983230
a=,01, n=25
.10 .80 .991370 .981075
.20 .70 .991249 .981485
.30 .60 .992616 .983624
.40 .55 .993708 .985307
.50 .45 .990277 977271
.60 +45 .996168 .989422
.70 +35 .992451 .978949
.80 .30 .991839 .975411




TABLE II (Continued)

a c, Pzr(n,a,cg) P;(n,a,cg-.OS)
a=,01, n=30
.10 .80 .991278 .982949
.20 .70 .995314 .988893
.30 .60 .994906 .987852
.40 .50 .991869 .980987
.50 .45 .993652 .983692
.60 .40 +994548 . 984632
.70 .35 .995159 . 984826
.80 .30 .995981 . 985441
a=.01, n=35
.10 .75 .990114 .980975
.20 .65 .993288 .984911
.30 .55 +994146 .985892
.40 .50 .995461 .988072
.50 .40 .991543 .977809
.60 .35 .990746 .974124
.70 .30 .992404 .975268
.80 .25 .991309 .968336
a=.01, n=40
.10 .75 .990892 .980548
.20 .65 .995920 . 989944
.30 .55 .995635 .988832
.40 .45 .992470 .980885
.50 .40 .993895 .982673
.60 .35 .994392 .982247
.70 .30 .994507 .980308
.80 .25 .994779 .977764
a=,01, n=45
.10 .75 .995770 .989597
.20 .60 .993268 .984490
.30 .50 .993725 .984264
.40 .45 .995222 .986624
.50 .40 .996782 .989452
.60 .35 .996584 .987762
.70 .30 .997200 .988005
.80 .25 .996848 .984314
a=,01, n=50
.10 .75 .995673 .989384
.20 .60 .995477 .988762
.30 .50 .995016 . 98686
.40 .40 .990604 +975283
.50 .35 .991730 .975488
.60 .30 .991531 .971847
.70 .25 .990424 .963801

.80 .25 .998089 .988893
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CHAPTER VII

FAILURE DISTRIBUTIONS WITH DECREASING MEAN RESIDUAL LIFE

Summary
The study of distributions with decreasing mean residual life (DMR) has
received little attention in the literature (Barlow, Marshall and Proschan [2],
Watson and Wells [Lq ). It is well known that this class of distributions contains
the class with increasing hazard rate (IHR), which is studied in the literature
in considerable detail. In this chapter, starting with a DMR distribution,
a sequence of distributions is constructed that preserves the DMR property.
It is further shown that this sequence of distributions converges to a
stable limit that has very interesting properties. It also turns out that
the only distribution which exactly reproduces itself in this sequence is the
exponential distribution, which thus may be looked upon as the boundary
distribution between DMR and IMR (increasing mean residual life) distributions.
It is believed that several inequalities derived under the IHR assumption
could be derived under the weaker assumption of the DMR property. As an

illustration, an inequality which was derived previously under the IHR

assumption is shown to be true for any arbitrary failure distribution.

Introduction and Notation

Let TO 2 0 be a nonnegative random variable with P[TO :_t] = Fo(t) =
t

J fo(t)dt where Fo(t) and fO(t) are respectively the distribution function and
0
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Clearly
F (e) = 1-R, (¢) (190)

is a distribution function of a random variable, say, Tl which is induced by

To. Let us write

t
—J nl(X)dx
Fl(t) = ]l-e O (191)

where, in accordance with (184), nl(t) is the hazard rate associated with T

l.
Now
t
Uo(t) —J nl(x)dx .
He® T ° (192)
Therefore
t
(B
log 56?67 = -J ny (x)dx ,
0
Differentiating with respect to t both sides, we get
1] '
H(0) g (E) ) Ho (B) )
Ho(t) 1y (0) Ho (B 1
where differentiation with respect to t is denoted by a prime.
1 k(8 ~ v (D) (193)
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Clearly
Fl(t) = 1-Rl(t) (190)

is a distribution function of a random variable, say, Tl which is induced by

TO. Let us write

t
—J nl(X)dx
Fl(t) = 1l-e O (191)

where, in accordance with (184), nl(t) is the hazard rate associated with T

1°
Now
t
Uo(t) —J nl(x)dx .
@ ¢ 0 (192)
Therefore
uo(t) F
log “0(0) = —J nl(X)dx R
0

Differentiating with respect to t both sides, we get

He(0)  wj(®)  ug(®)
Ho(8) 1y (0 T ug(e) T

—nl(t) ’

where differentiation with respect to t is denoted by a prime.

Ro(t) 1
=T © TV (193)
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Thus the hazard rate nl(t) of the random variable T1 is the reciprocal

of the mean residual life of the given random variable T For consistency

0.
of concept we define

vo(t) = , which implies

_1
Zy(t)

no(t) Zo(t) . (194)

Generalizing (189) we define the distribution function Fk(t) of the random

variable TK (induced by the given random variable TO), by

uK_l(t)
FK(t) = l-RK(t) = 1- . __(0) (195)
K-1
where
Mp_q (€)= J RK_l(X)dx s (196)
t
K 1,2,3,..... ’
and
g1 (0 = E(Ty_p) . (197)
Writing
t

FK(t) = l-e 0 ’
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one obtains for the hazard rate nK(t) associated with T

K
- 1]

e - 1 (8 Ry © ’ (199)

K g1 (B Hgq (V)
which shows that the mean residual life vK(t) of the random variable TK_l
is related to nK(t) by

J RK 1(x)dx
(t) -
v(t) =KL & - (200)
K Ry (0 Ry 1 (1) ng (£)

Assuming that the density exists, differentiating (195) with respect to t, one

one obtains for fK(t) the probability density function of TK that

Rg-1(®)

f (t) = ’ K=1’2)-" . 201
K i1 (0) (201)

Equation (201) shows that fk(t) is a decreasing function of t for all K = 1,2,3,...

Starting from the given random variable TO we have thus generated a
sequence {TK} K=1,2,... of random variables, whose distribution functions and

associated properties have the representations discussed above.

Properties of the Class of Distributions FK(t)

In this section we will prove that if the given random variable T0 has a
distribution with DMR property, then the induced sequence of random variables

TK’ K=1,2,...,», will all have distributions with the DMR property. To prove

this we need the following Lemma.



Lemma 5

! - = =
vK(t) vK(t)nK_l(t)+1 0, K=1,2,3,...

Proof

By definition from (200),

[+

v (DR, (1) = np ,(8) = J Ry ()ax .
t

Differentiating both sides with respect to t,we obtain
vg (DR 1 (£)=v ()£, (8) = -Ry_, (1),

which implies
vk(t)—vK(t)nK_l(t)+l = 0.

Putting K=1 in the lemma, one obtains

] -
vl(t)—vl(t)zo(t)+l = 0, where

94

(202)

(203)

Zo(t) and vl(t) are respectively the hazard rate and mean residual life of the

given random variable TO.

We will now prove the following:

;ﬂheoggm 6

F,(t) is DMR implies FK(t) is DMR, K = 1,2,...,>.

r -
Equation (203) was obtained by W. R. Knight §6J
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Proof

We will prove the theorem by showing that YK_l(t) is decreasing in t will

imply that vK(t) is decreasing in t which, combined with the assumption vl(t) is

decreasing in t, proves the theorem.

We have from (200) that

e o]

vK(t) = J RK_l(X)dX/RK_l(t) . (204)

t

Multiplying both sides by RK_Z(t),

Rep(®) 7 R @
v (OR,_,(E) = ﬁ;j;(;; J i;:;?;? Ry, (x)dx . (205)
t

By definition from (199) we have

RK;Z(t) RK-Z(t)

(t) = = ’ (206)
"k-1 @ Mg (DR, (£)
J RK_Z(x)dx
t
since
Hp_p (€)= J Ry_,(x)dx = J Hg_o(0) £, 4 (t)dt
t t

from equation (201).



Substituting from (206) in (205) we have

=]

= 1
VK(t)RK_z(t) = uK_z(O)ﬂK_l(t) J UK_Z(O)nK_l(X) RK-Z(X)dx
t

- —1
- nK—l(t) J nK_l(x) RK-Z(x)dx
t

1
= \)_K:(T) J \)K_l(X)RK_Z(X)dX
t

Since vK_l(t) is assumed

t

which implies from (199) that

\)K(t)n (¢) <1.

K-1
Now from Lemma 5,

vK(t)nK_l(t) = l+vé(t) .

Combining (208) and (209, we discover that

ve(t) <0,

which implies that vK(t) is decreasing in t.

to be decreasing in t, equation (207) becomes

96

(207)

(208)

(209)

(210)
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Convergence of the Sequence of Distribution {FK(t)}

We will first prove that the sequence of mean residual times {YK(t)}

associated with the sequence of distributions {FK(t)} forms a monotonic decreasing

sequence when the given distribution Fo(t) has the DMR property. From equation

(202 we obtain

1

VK-1

\)I'<(t)—\)K(t) (e)+1 =0 ,

which reduces to

v, (£)=v,, . (t)
v (e) = K K-1

el () : (211)

Since by inequality (211) Yi(t) < 0, in view of equation (211) we discover
that

VK(t) f_VK_l(t) s K=1,2,...,o . (212)
Now from equation (198),
1
—J K(X)dx
0
FK(t) = l-e (213)

From (212) we have

t t
1 1
dx > —— dx
Jv x)"" = J v (%) ’
o K o (k-1
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which implies that

F (t) > Fe_ (D), K=1,2,...,° . (214)

Thus the sequence of distributions {FK(t)} 1s a monotonic increasing sequence,
being uniformly bounded by unity; the sequence therefore converges to a limiting

function F_(t) which is a distribution function by a well-known theorem of

Helly.

Defining the characteristic function of the random variable TK by

iTKu T ix
¢K(u) = E(e ) = J e u fK(x)dx (215)
0

and using the relation (201) one can deduce the following recursive relation
satisfied by the sequence of characteristic functions {¢K_l(u)} :

iu uK_l(O)QK(u) = @K_l(u)—l . (216)
From (214) it follows that

Re(t) < RK_l(t) .

and therefore
0 < uK(O) = J RK(x)dx j_uK_l(O) . (217)
0

Equation (217) implies that the sequence {uK(O)} of means of the random variables

{TK} converges to a limit denoted by u_.
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In view of (216) and the existence of u_, and the continuity theorem on

characteristic functions':s,p.54], it follows that the limiting

characteristic function ®w(u) is given by

(218)

which is the characteristic function of an exponential random variable with

mean u_. This limiting distribution will degenerate to a singular distribution

when p_ = 0. Thus we have proved the following:

Theorem 7

The sequence of distributions {FK(t)} K=1,2,...» generated from a given
DMR distribution Fo(t) converges either to a singular distribution or to an

exponential distribution.

Examples
Example 1

Let Fo(x) be an exponential distribution given by

_ 1_."AX
Fo(x) = l-e

(219)

From (195) and (196) it follows that

t t
J RK_l(x)dx J (l—FK_l(x))dx
F(t) = 2 -2

K uK_l(O) “K-l(o) . (220)
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In this case

Fy(x) 1-e 7 = Fy (%)

and also

FK(x) Fo(x) for all K.

We will now characterize the exponential distribution by this property.

Suppose any two successive members of the sequence {FK(t)} are identical, i.e.,
FK(t) = FK-l(t) for some K > 1 . (221)
Equation (221) implies that
ug(0) = E(T) = wp_,(0) = E(T, ) . (222)

Using (220), (221) and (222) we obtain

t

FK(t) = J (l-FK(x)dX/uK(O) . (223)
0

Differentiating equation (223) we obtain that

£y (t) __1
l-FK(t) uK(O)
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which is true if and only if

N S
uK(O)
FK(t) = l-e . (224)

From (224) and the definition of F

K+1(t) it follows that

FK(t) = F_  .(t) (t) = ...

k+1 (") = Frao

It remains to be shown that FK-Z(t) and all previous members of the sequence

{FK(t)} are exponential. Writing (K-1) for K in (220) and differentiating, it

follows that

1
fo () = —=—=— (1-F,__(t))
K-1 UK—Z(O) K-2
(225)
__t
I SR &1
Hg-1(0)
Putting t = 0 in (225) we discover that
0) = 0) .
Mg-1(0) = 1g_, (O (226)

Combining (225) and (226) we finally obtain
t

Mg-1

FK_Z(t) = l-e
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It is clear that in a similar manner all the distributions have to be exponential.

We have thus proved:

Theorem 8

The sequence {FK(t)} is identically exponentially distributed if and

only if for some K > 1, Fp(t) = F_, ().

Example 2

IA
[

It can be easily seen that

1-(1—t)2, 0<t=<1,

Fl(t)

fl(t) 2(1-t), O0<t=<1,

and more generally,

F () = 1-(1-0)™1, o<t <1
£(6) = (@) (1-0)", 0<t <1
u (0) = 1/(n+2)

z (t) = (ntl)/(1-t)

v (t) = (1-t)/(n+2)

In this case Fn(t) converges to a degenerate distribution with all the mass

concentrated at the origin.



An TInequality for Arbitrary ¥ailure Distribution

One form of the following inequality for the expectation of a random

103

variable is proved by Barlow [1], under the assumption that the distribution

function of the random variable has an increasing hazard rate.

establish the following inequality in general.

Theorem 9

Let X be a random variable with probability density function f(x), and

let E|X| < «» . Then
t [+ +]
J t f(t)dt J t f(t)dt
== <EQX) < e
P[X < x] P[X > x]
Proof
E(X) = J t f£(t)dt
x (e o]
= J t f(t)dt + J t f(t)dt
-00 X
Also,
E(X) = {P[X > x] + P[X < x]} J t f(t)dt .

(227)

(228)

(229)



104

So, from (228) and (229) we have,

o0

X
1
J t f(t)dt = fﬁif?;::T J t £(t)dt

- 00 -

1
+ P[X < x] {:

Thus we see from (230) that

W ——38

t £(t)dt - P[X > x] j t f(t)d{} . (230)

J t f(t)dt < [P X > x] J t f(t)dt
X o)

X

<=> J t £(t)dt < ?Ti_%TQT J t £f(t)dt . (231)

-O0

Therefore it suffices to prove only one of the inequalities in (227). Let us
break up the range of X into two parts: E(X) < x and E(X) > x. When

E(X) < x, we have

W8

t f(t)dt > x J f(t)dt = x[P X > x] ;
X

. 1
.o PIX > x] J t £(t)dt > x > E(X) (232)
X
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When E(X) > x, we have

X X
J t £(t)dt < x j f(t)dt = x P[X < x] < E(X) P[X < x] ;

-C0 -

X
E(X) - J t f(t)dt > E(X) - E(X) P[X < x] ,
or P[X—]>-;<—]— J t f£(t)dt > E(X) . (233)
X

(232) and (233) together prove the first part of (231), which implies the

second part.
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CHAPTER VIII

OPTIMUM ESTIMATION OF THE LAW OF FAILURES

Consider the estimate ®
£ (t) L BnK(Bn( T- to)) dF _(r)

B_ I,

- —_Z K(B (T.-t))
n n j o
j=1

for estimating the density f£(t) of the underlying law of failures, where

(234)

Ty Tpy eee T n 8re the observed times to fallure of the n items put to a

j R~
life test, and ¢ o is a point of continulty of the underlying law of failures.

Choose the weight function K(t) such that it vanishes outside a finite inter-
val around t = to. More specifically, let

K(t) = o for |t - to‘ >h (235)

where h > o is any finite real number,

In view of the results cbtained in Chapter II on fn(to) , it follows
that

236
lim E(f (£0) = £(t) f K(t)dt (236)

and

m [ var (¢ (t )] = f(t) f Ko(t) dt . (237)
n—~® ""n t -h
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From equation (236) the condition foar asymptotic unbiasedness on the weight
function K(t) is that

t_th
f K(t) dt = 1. (238)

to—h
let us now impose a condition on the spread, or equivalently the
"bandwidth," of the weight function K(t). One measure of the bandwidth of
K(t) 1s its variance or the second moment sbout its mean. Denoting this

quantity by B, we have

t +h
° 2
B = f (t -t )" K(t) at
t -h
(o]
t th
- f 2 K(t) dt - £ . (239)
t -h
Therefore,
t +h
2 .
f PK(t) dt = B + .
. (240)
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Definition of Optimum Estimate for the
Underlying Law of Failures

Far a given sample and a given sequence {Bn], the estimate for the density
f(to) at t = t_ depends only on the weight function ar window K(t).

Choose K(t) such that the corresponding estimate fn(to) bas minimum
asymptotic variance subject to the conditions of asymptotic unbiasedness and
a given bandwidth. Such estimates for the density of the underlying law

of fallures are called optimum estimates,

The exlstence of a weight function realizing the above requirement is evident
from the fact that the set of all distributions with a bounded second mcment

is compact.

Optimum weight functions can now be cbtained: Namely, the weight function
K(t) which is nonnegative, satisfies equations (238) and (240) for a given

B =B and renders

od
t +h
(0]
f K2 (t) dt a minimum, C(241)
t -h
o
The following well-known lemms, fram the calculus of variations can now be

used,

Lemma 10

Let
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b

1(K) :a[ F(,K,.%%)dt (A), | (242)
d

W, (K) = Jb Gl(t, K, —d%-)dt—cl = o (B, (243)

W, (K) = j G, (t. x, F)at-c, = 0 (0. (264)

Then the function K(t), which minimizes the functional (A) subject to the

conditions (B) and (C), is given by the Euler-Lagrange differential equation

2 o7p_29 - - =
G |F - ™M G -2 Gy 8t[aK, (F-2 G -2 Gz)] 0 (245)

where the symbol prime denotes differentiation with respect to t, and )‘1,

)\2 are the Lagranglan multipliers which are determined by the two conditions

(B) and (C). The lemma also assumes that

. 9G.
0G; 8 1)¢0, i=1,2. (246)
9K ~ dt\ k.

To obtain the optimum weight function K(t), apply the lemma with

F (t, K, K') = K(t),

G, (t, K, K') K(t),

p (247)

G. (t, K, K') = tZ K(t),

2
and the interval (a, b) is the interval (1:0 -h t_+ h). The Euler-

Lagrange differential equation in this case is

4 2_ N K-\ tZK]:() (248)
'a'K'[K 1 2
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Hence,

K(t) = A + Bt (249)

where we have written A and B for X1/2 and )\2/2, respectively., A and B are

determined from the conditions of equations (238) and (240). Thus,

to+h 2
] (A + B t%) dt

1

1

t -h
t +h (250)
fo 2 (A + B td)dt = Bo+t02
t, -h
Simplyfying equation (250), A and B are given by
> -n) - (B +t°
(to * h) : (to ) ( 0 3 > [<t0+ h)3 - <to - h>3] (251
A= 2h 5 5\ 1 3 < h ¢
B+ nf - (o) -5 (o F - o)
2h (Bo + toz) - ; [(to + h>3 - ("o - h)3J , (252)

B =

oY RIS B TR

Now suppose that the weight function K(t) is constant in the time interval

(to- h, t_ + h). Then
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since .
t +h
fo
dt = 1 .
t -h K(t)
(o]
Also, from equation (239),
1:0 + h
B - [ @Kk a - e 2
°© t -nh
o
(1) - (-0
10 o -t
- 6h o *

Substituting far B_ from equation (254) in B given by equation (252), it is
found that B is identically zero, Also substituting for Bo fram equation

(254) in A given by equation (251), it is found that

As—a-i'-l- .

Thus, the rectangular window

L for t -~hs=st<t +h
o 0

K(t) h

0 otherwise

is optimum far estimating the underlying law of failures for large samples.,
Optimum estimates for the underlying law of failuwres, using other plausible

restrictions, can be obtained in a similar manner,

(253)

(254)
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CHAPTER IX

CONCLUDING REMARKS

In the first three chapters of this report a number of asymptotic results
have been obtained which deal with estimation and confidence bands for life
distributions, their probability densities, and hazard functions, based on
random samples, as well as on censored and truncated samples. As is
frequently the case with asymptotic procedures, certain pertinent questions
still need answering. How large must the sample sizes be under any one of
these procedures, to make the asymptotic results practically applicable?

Is it possible to replace the asymptotic results by exact small-sample
results? While the second question appears very difficult to answer, informa-
tion leading to answers to the first question is most likely obtainable by
the use of Monte Carlo techniques, and studies of this kind should be under-
taken in the future.

In Chapter V the meaning and the importance of jumps of the distribution
function of 1life lengths have been discussed, and a test procedure h;s been
proposed which makes it possible to conclude whether a given life distri-
bution has points of discontinuity or not. This procedure, however, does

not offer a hint as to the time instant at which those jumps occur. Since
these time instants are the times of instantaneous increase of the hazard,

it would be of considerable practical importance to be able to estimate their
location on the time axis. This, again, constitutes an open problem which

should be investigated.
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For the Rényi-type statistics discussed in Chapter VI, the exact distri-
butions for finite sample sizes are available, as well as the asymptotic
distributions for large samples. Two such statistics have been explored

in detail and numerical tables have been computed which make it possible to
use them in practical situations. Both of these statistics could be used
for the same kinds of problems, and the question has not been answered which
of the two statistics is preferable. It appears likely that this question
can be answered by analytic methods, by studying the relative asymptotic
efficiencies of these two statistics. Should these methods fail, a Monte

Carlo study would always be an alternate route to the problem.

The family of DMR life distributions, discussed in Chapter VII, has a number
of theoretical properties which suggest that it may be capable of several
applications. No such applications, however, have been explored in the

present report, and a study of this kind should be undertaken in the future.

In Chapter VIII the question of optimizing the asymptotic estimation
procedures discussed in Chapter II is raised. An answer to that question
in principle has been obtained in a form which, for a given sequence of
constants Bm’ determines the weight function K(t). An open problem
which should be further explored is that of determining the sequence of

the constants Bm in an optimal manner.
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